
COMP3161/9164 24T3 Assignment 0
Proofs

Marks : 15% of overall marks for the course.
A mark of x (out of 100) on this assignment will
translate to .15x course marks.

Due date: Friday, 4th of October 2024, 23:59:59 PM (Sydney Time)
This was extended from Monday, by popular demand.

1 Task

In this assignment you will formally model a language of boolean computations using a
variety of semantic techniques, including its syntax and sematics, and its compilation to
various target languages.

Prepare your answers in one PDF file, preferably using LATEX, where all prose is
typeset. Figures may be drawn, but make sure they are legible. Please ensure all
mathematics is formatted correctly. Some guidance will be posted on the course website.

Submit your PDF using the CSE give system, by typing the command

give cs3161 Proofs Proofs.pdf

or by using the CSE give web interface.

Part A: Syntax (25 marks)

Consider the language of boolean expressions P containing just literals (True, False),
parentheses, logical and (∧) and negation (¬):

P = {True, False,¬True,¬False, True∧ False,¬(True∧ False), . . . }

1. Write down a set of inference rules that define the set P. The rules may be
ambiguous. (5 marks)

2. The operator ¬ has the highest precedence, and logical and is right-associative.
Define a set of simultaneous judgements to define the language without any ambi-
guity. (5 marks)

1

3. Here is an abstract syntax B for the same language:

B ::= Not B | And B B | True | False

Write an inductive definition for the parsing relation connecting your unambiguous
judgements to this abstract syntax. (5 marks)

4. Here is a big-step semantics for the language B

x ⇓ True

Not x ⇓ False
(N1)

x ⇓ False

Not x ⇓ True
(N2)

True ⇓ True
(N3)

False ⇓ False
(N4)

x ⇓ False

And x y ⇓ False
(N5)

x ⇓ True y ⇓ v

And x y ⇓ v
(N6)

a) Show the evaluation of And (Not (And True False)) False with a derivation
tree (arguably this belongs in Part B). (5 marks)

b) Consider the following inference rule:

x ⇓ v

Not x ⇓ v−1

where we understand v−1 to be defined by the following equations:

True−1 = False
False−1 = True

Is this rule derivable? Is it admissible? Justify your answers. (5 marks)

Part B: Semantics (20 marks)

Here is a small-step semantics for a language L with True, False and if expressions:

c 7→ c ′

(If c t e) 7→ (If c ′ t e)
(1)

(If True t e) 7→ t
(2)

(If False t e) 7→ e
(3)

1. Show the full evaluation of the term (If True (If False True False) False). (5
marks)

2. Define an equivalent big-step semantics for L. (5 marks)

3. Prove that if e ⇓ v then e
⋆7→ v, where ⇓ is the big-step semantics you defined in

the previous question, and
⋆7→ is the reflexive and transitive closure of 7→. Use rule

induction on e ⇓ v. (10 marks)

2

Part C: Compilation (15 marks)

1. Define a recursive compilation function c : B → L which converts expressions in
B to expressions in L. (5 marks)

Clarifications:

• The goal here is to write a (tiny) compiler/translator from language B to
language L, i.e. from the abstract syntax of language B to that of language
L.

• It is expected that your function is recursive, for instance, the translation
process for (Not x) might recursively involve the translation of x.

• We want you to translate all the different kinds of expressions in B. An
alternative would be to try to simplify the expressions in B first, and it
happens to be the case that all of the expressions in B simplify to True or
to False. In this part, try to ignore that, for instance by imagining that we
plan to add more features to B and L which will include values that are not
statically known to be true or false.

2. Prove that for all e, e ⇓ v implies c(e) ⇓ v, by rule induction on the assumption
that e ⇓ v. (10 marks)

Part D: Lambda Calculus (25 marks)

1. Here is a term in λ-calculus:

(λn. λf. λx. (n f (f x))) (λf. λx. f x)

a) Fully β-reduce the above λ-term. Show all intermediate beta reduction steps.
(5 marks)

b) Identify an η-reducible expression in the above (unreduced) term. (5 marks)

2. Recall that in λ-calculus, booleans can be encoded as binary functions that return
one of their arguments:

T ≡ (λx. λy. x)

F ≡ (λx. λy. y)

Either via L or directly, define a function d : B → λ which converts expressions in
B to λ-calculus. (5 marks)

3. Prove that for all e such that e ⇓ v it holds that d(e) ≡αβη v ′, where v ′ is the
λ-calculus encoding of v. (10 marks)

3

Part E: Let-Bound Local Functions (15 marks)

Suppose we added unary local function definitions to our language P. Here’s an example
in concrete syntax:

let
g(x) = ¬x

in
g(True)

end

We limit ourselves to non-recursive bindings (meaning functions can’t call themselves),
and first-order functions (meaning functions require boolean arguments).

1. Extend the abstract syntax for B from question A.3 so that it supports the features
used in the above example. Use first-order abstract syntax with explicit strings.
You don’t have to extend the parsing relation. (5 marks)

2. Define a scope-checking judgement, similar to the ok judgement from the lectures.
It should check (a) that all names of variables and functions are used only within
their scopes; and (b) that names used in variable (or function) position are indeed
the names of variables (or functions). Hence, the following expressions should all
be rejected:

let
f (x) = ¬x

in
f (x)

end

let
f (x) = ¬x

in
f (f)

end

let
f (x) = x (True)

in
f (False)

end

The following are examples of things that should be accepted: nested definitions,
and shadowed definitions.

let
f (x) =
let
g(y) = ¬x ∧ y

in
g(x)∧ ¬g(x)

end
in
f (False)

end

let
f (x) = x

in
let
f (x) = f (x)

in
f (True)

end
end

Note that the latter example is not a recursive call.

4

This question is a bit more open-ended than the previous ones, and will require
you to make some design choices. Here’s one: if the same string is used to denote
both a function name and a variable in the same scope, should that be rejected or
accepted by your judgement? Explicitly state (in English) which choice you made,
and define things accordingly. (10 marks)

2 Late Penalty

You may submit up to five days (120 hours) late. Each day of lateness corresponds to
a 5% reduction of your total mark. For example, if your assignment is worth 88% and
you submit it two days late, you get 78%. If you submit it more than five days late, you
get 0%.
Course staff cannot grant assignment extensions—if you need an extension, you have

to apply for special consideration through the standard procedure. More information
here: https://www.student.unsw.edu.au/special-consideration

3 Plagiarism

Many students do not appear to understand what is regarded as plagiarism. This is
no defense. Before submitting any work you should read and understand the UNSW
plagiarism policy https://student.unsw.edu.au/plagiarism.
All work submitted for assessment must be entirely your own work. We regard un-

acknowledged copying of material, in whole or part, as an extremely serious offence. In
this course submission of any work derived from another person, or solely or jointly writ-
ten by and or with someone else, without clear and explicit acknowledgement, will be
severely punished and may result in automatic failure for the course and a mark of zero
for the course. Note this includes including unreferenced work from books, the internet,
etc.
Do not provide or show your assessable work to any other person. Allowing another

student to copy from you will, at the very least, result in zero for that assessment. If
you knowingly provide or show your assessment work to another person for any reason,
and work derived from it is subsequently submitted, you will be penalized, even if the
work was submitted without your knowledge or consent. This will apply even if your
work is submitted by a third party unknown to you. You should keep your work private
until submissions have closed.
If you are unsure about whether certain activities would constitute plagiarism ask us

before engaging in them!
You are not allowed to use AI tools (such as ChatGPT or GitHub Copilot) to help

you with technical content, or to develop definitions and proofs. You are allowed to use
AI tools for non-technical purposes; for example, to help polish your grammar in essay
questions.

5

